Q. 6 A mild steel wire of length 2L and cross-sectional area A is stretched, well within elastic limit, horizontally between two pillars (figure). A mass m is suspended from the mid-point of the wire. Strain in the wire is

Thinking Process

We will assume the vertical displacement x to be very small compared to L. Change in the length will be calculated by difference of final total length and initial length 2L.

Ans. (a) Consider the diagram below

Hence, change in length

$$\Delta L = BO + OC - (BD + DC)$$

$$= 2BO - 2BD$$

$$= 2 [BO - BD]$$

$$= 2L \left[\left(1 + \frac{x^2}{L^2} \right)^{1/2} - L \right]$$

$$= 2L \left[\left(1 + \frac{1}{2} \frac{x^2}{L^2} - 1 \right] = \frac{x^2}{L}$$
(: BO = OC, BD = DC)
$$\approx 2L \left[1 + \frac{1}{2} \frac{x^2}{L^2} - 1 \right] = \frac{x^2}{L}$$
(: x << L)
Strain = $\frac{\Delta L}{2L} = \frac{x^2/L}{2L} = \frac{x^2}{2L^2}$

 \mathcal{F}_{i}